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Open-ended items, in which students draw images, explain meanings or argue, allow them to express 

their own mental representations of situations and make it possible to grasp even fragile concepts in 

nuances and details. However, those answers-types are rarely found in digital formative assessment, 

also because they are often difficult to evaluate. This paper reports on the integration of open-ended 

items into the digital formative assessments of the Mastering Math – Online-Check and exemplifies 

for an item on conceptual understanding of multiplication how current approaches of category-based 

scoring could be optimized by using decision trees to rate features of responses. In preparation for 

the integration of an automatic pre-coding by an artificial intelligence, an exploratory study is 

presented on the functioning of prompt-based classification of students’ answers by ChatGPT. 
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tree, AI-prompts. 

 

Open-ended items are “worth the effort” in digital formative assessments 

Formative assessments have the potential to promote the implementation of conceptual learning in 

classrooms (Burkhardt & Schoenfeld, 2018). However, many digital formative assessment (DFA) 

platforms hold a dominant procedural focus (Hoogland & Tout, 2018), partly because procedural 

items are easier to (automatically) evaluate. In order to uncover shallow understanding and to assess 

deep conceptual understanding, items are needed where students translate a concept between different 

(e.g., verbal, graphical, symbolical, or contextual) representations, explain the meaning of particular 

concept elements and the connection between representations, or connect different concept elements 

in a wider network of elements (Hiebert & Carpenter, 1992). There are proofs of existence that 

students’ thinking can be assessed by well-designed multiple-choice formats (e.g., the SMART test, 

Stacey et al., 2018), but open-ended long-answer or complex graphical formats give students more 

opportunities to express their own mental representations of situations (without being influenced by 

distractors), allowing thus the demonstration even fragile concepts in details and nuances (Hankeln 

et al., submitted). Furthermore, students’ language production for describing mathematical structures 

or explaining meanings are relevant learning goals (Götze & Baiker, 2021; Prediger, 2022) that 

should not be excluded in assessments, also because those responses provide valuable resources for 

subsequent communication processes between students and teachers. 

Typical challenges in coding open-ended items 

Well-designed open-ended items come with the price that the evaluation of those responses requires topic-

specific epistemic background knowledge, taking into account the current position of students’ learning 

progression, knowledge about the relevant components of the assessed topic, like concept elements, 
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representations, and language needed to explain them (Siemon, 2019) and typical misconceptions. In their 

meta-study of 14 DFA tools, Çekiç and Bakla (2021) state 

“As for open-ended items, no fully reliable methods of grading have been created so far, but there 

have been significant developments in this area. Several tools have put an effort in developing 

systems to grade open-ended items. There have been four methods of grading: (1) autoscoring of 

short-response questions […], (2) auto-grading based on the existence of a set of pre-determined 

keywords […] (3) assigning numerical scores manually […] and (4) the use of artificial 

intelligence for scoring open-ended items. Each of these methods is valuable in a time when we 

desperately need ways to deal with open-ended responses. […] Obviously, the success of the 

keyword method or artificial intelligence is open to debate and should be tested empirically, yet 

they seem to be good starting points for further developments.” (p.1477) 

This paper presents a small-scale exploratory study to address this research gap, contrasting a 

combination of (2) and (3), namely manually classifying open-ended items based on different coding 

schemes with (4), the use of few-shots prompts to ChatGPT to code students’ responses, all within 

the DFA Mastering Math – Online-Check. 

Open-ended items in the Mastering Math – Online-Check 

 

Figure 1: Exemplary open-ended items in the Mastering Math Online-Check 

The Mastering Math – Online-Check (Hankeln et al., submitted) is currently developed as a DFA that 

is integrated in the 15-year-long Mastering Math project which aims at Grade 5–7 (10- to 13-year-

old) students who struggle in mathematics and need a second learning opportunity for understanding 

basic arithmetic concepts such as the place value understanding or meanings of multiplication and 

division (Prediger et al., 2019). Each of the 45 Online-Checks is linked to teaching material, and the 

results of every Online-Check provides support for the prioritization of learning tasks and 

communicative prompts in remediation classes. The Online-Checks are administered in the newly 



 

 

created platform alea.schule. When teachers have chosen an Online-Check for their students in this 

platform, students can access the assessment via any browser on a tablet or computer. When students 

have filled out an Online-Check, their answers get send to the teacher-platform alea.schule. All items 

in closed formats (multiple-choice or single-choice items, short answers, drag-and-drop answers, etc.) 

are automatically coded as correct or incorrect regarding typical misconceptions. Open answers need 

to be manually coded by teachers, supported by suggested item-specific categories entailing typical 

solutions and errors (Figure 2). So the items can be evaluated not just if they are right or wrong, but 

“wrong in a specific way” (Stacey et al., 2018, p. 246). The evaluation outcomes can be displayed in 

different evaluation dashboards with varying degrees of details and focus. The Online-Check thus 

aims at informing teachers to support their planning of subsequent lessons and does not provide any 

direct feedback to students. 

 

Figure 2: Coding area in the platform alea.schule: Category-based coding to evaluate of students’ responses 

Evaluation of category-based scoring and proposition of decision trees 

A necessary (but insufficient) precondition for the validity of the conclusions drawn from the 

classification of students’ responses is that the coding of open items is reliable (Çekiç & Bakla, 2021). 

However, a pilot study with 15 pre-service teachers (in their mathematics teacher master program) 

who coded 50 responses to the item “Bottles” in Figure 2 following the proposed categories revealed 

low interrater-reliabilities (3 rater per student response, κ = .21). 

There can be various reasons for this observation: The correct choice of a category is highly 

dependent on the raters’ pedagogical content knowledge (Prediger et al., 2023). Without an accurate 

understanding of the categories, raters cannot identify central indicators for these categories within 

student responses. Whereas research projects overcome this challenge by detailed rater preparation, 

teachers – in their daily use of the tool – need to be able to code different items without detailed 

instruction. That is why proposed buttons for selecting categories have to be labeled precisely, taking 

into account frequent misconceptions. While there are ideas how to improve the comprehensibility, 

for example by including category descriptions, another approach is to integrate a feature-based 

scheme to evaluate the answers in form of decision trees (Kingsford & Salzberg, 2008). Students’ 

responses are thus seen as texts that have to labelled, which makes the coding of students’ answers to 

a form of text-classification problem (Gasparetto et al., 2022). There are various approaches to text-

classification as it is widely used for example in spam-filters or website-classification, and one of 

them is decision trees. A decision tree is a sequence of questions about features associated with the 



 

 

items (Kingsford & Salzberg, 2008). The questions thereby form a hierarchy, encoded as a tree. There 

are statistical means to design such hierarchical trees, for example to ensure that the data is divided 

into groups with similar variances by each questions (Kingsford & Salzberg, 2008). However, for 

evaluating students’ responses, the hierarchy is derived from the goal of the assessment and has to be 

grounded in topic-specific mathematics education backgrounds. 

 

Figure 3: Decision tree for the Item “Bottles” (from Figure 2)  

Moons (2023) reports that some teachers consider grading schemes to be more efficient even when 

in fact it does not accelerate their grading process. A grading scheme is a set of statements from which 

teachers can select those that match the students’ response (also called check-box grading). As the 

traditional, holistic grading in this study already had a very high interrater-reliability (κ > 0.8), a 

significant improvement by introducing the check-box grading could only be observed for one item.  

For the Item “Bottles” (Figure 2), we designed a decision tree in order to evaluate students’ conceptual 

understanding of multiplication (Figure 3). In this paper, we analyze those answers that justify their 

(correct) decision that the word problem posed by a fictitious student does not match the 

multiplication 2 x 5. The first step in the decision tree was to identify “nonsense” answers that cannot 

be used for an assessment,. The second question aimed at identifying if answers indicate students’ 

understanding that the posed word problem uses counted units of different size which does not 

correspond to multiplication unit structures (first 2 bottles, then 5 bottles instead of two times the 

same amount of bottles). This is the essential aspect of the item to capture if a student uses expressions 

referring to the bundle sizes. If not, the next question checks if the answer argues that the word 

problem would fit an addition (and (implicitly) argues that it thus cannot be a multiplication). All 

while being correct as well, this answer reveals insight into students’ conceptual understanding of the 

contrast between addition and multiplication.  Differentiating between these nuances allows to make 

detailed diagnoses of individual students to enchain specific follow-up questions only to certain 

students. If this third question is answered negatively, the response-text is checked if the student 



 

 

correctly rejected the proposed multiplication but based his decision on incorrect reasons. As the 

posed word problem contains three numbers, a typical surface strategy is to blindly take and combine 

them. So, the third question tries to identify those answers that draw upon this surface strategy by 

saying for example “the second 2 is missing in the calculation, it has to be 2 x 2 x 5 = 20”. All 

remaining response-texts are assumed to be atypical mistakes that cannot unambiguously be related 

to theoretical misconceptions. 

Empirical Study: Human and AI-coding with a decision tree 

Methods 

To investigate if the decision tree-based approach is a suitable way to optimise the coding of open-

ended items, 124 children’ responses to the Item “Bottles” from a pilot study of the Online-Check 

were coded with the decision tree. Firstly, two trained raters coded all responses independently, 

discussed differences and decided on a final coding (“expert-rating”) that is used as base-line to 

compare the quality of other ratings. Secondly, 15 pre-service teachers in their master studies coded 

a subset of 50 responses according to the decision tree. Every pre-service teacher received 10 

responses to code in a rotated design. Those 10 responses were compiled to be a representative set of 

answers in order to avoid systematic misunderstandings of the questions biasing the ratings. The 

sample was drawn from a stochastics course for second year pre-service teachers at TU Dortmund 

University, which did not relate to the topic of the item. There were no additional information 

provided for the raters other than those in Figure 3. This coding resulted in a dataset (“teacher-rating”) 

with three ratings per students’ response. The different codings were compared (a) within the group 

of pre-service teachers in order to estimate their agreement (using Fleiss Kappa) and (b) between the 

expert-rating and the teacher-rating. Thirdly, the AI ChatGPT was asked with the help of few-shot 

prompts to classify the students’ responses analogically. This coding was also compared to the expert-

rating and the teacher-rating based on the accuracy (proportion of predictions that are correct), the 

precision (proportion of positive predictions that are correct) and the sensitivity (recall) (proportion 

of positive answers that are correctly predicted). 

Findings 

The expert-rating revealed that even though the hierarchical structure is only developed with respect 

to the assessed content, every group of responses is represented (Table 1) and only 38 responses 

(31 % of all responses) belonged to the “other error” category. 21 responses (55 % of this category) 

showed atypical mistakes like misunderstanding the situation (“he gets two and five bottles and he 

does that two times, so it has to be two times seven”), the others gave incomplete justifications (“he 

goes two times in the basement”) or gave no reasons at all (“it does not fit”).  

 Table 1: Distribution of responses categories 



 

 

The “teacher-rating” conducted by master students showed an improvement in the interrater-

reliability for the coding based on a decision tree compared to the classical category-based approach 

(see above), ranging between κ = .41 (B),  κ = .63 (C) and κ = .58 (D). It is interesting to see that the 

question that requires the most pedagogical content knowledge about unitizing or multiplication as 

counting in groups is the category with the lowest agreement. This question had an insufficient 

agreement between expert-rating and teacher-rating. The pre-service teachers only coded 59 % of the 

responses like the expert-rating for question B, while 73 % of agreement was reached for question C. 

Question D showed the lowest agreement with 39 %. It has to be kept in mind that the pre-service 

teachers did not receive any examples or explanations for the different questions.  

 
Figure 4: Prompt to Chat-GPT to answer question C in the decision-tree (Figure 3) 

In order to explore how a Large-Language-Model such as ChatGPT can evaluate the responses 

without being a priori trained with labelled data, we formulated few-shot prompts, where we 

described the item (classifying students’ responses), the origin of the data (students’ responses to the 

item “Bottles”) and explained the questions that ChatGPT had to answer for every response (Figure 

4). To improve the quality of the coding, we also included a few examples for the decisions yes or no 

respectively. Those examples were given both as general description and with a precise example. We 

iterated the prompt design and revised the prompts when we could identify systematic 

misunderstandings. We report here the statistics of the best fitting prompts. The identification of non-

rateable responses worked very well with an accuracy of 96 %. In two cases, ChatGPT found a 

rateable response to be non-rateable, so the precision was a 100 % but the recall (sensitivity, how 

well a yes-answer can be detected) was 98 %. This error would thus lead to the abort of the coding 

process and the loss of diagnostic information. The identification of the structural element of the 

multiplication was identified in 32 cases in the expert-rating. All of those cases have also been 

identified by the AI, the recall was thus 100%. However, 21 cases have been falsely diagnosed to 

make reference to the structural element of multiplication (precision: 60 %). In total the accuracy was 

82 %. The expert-rating revealed 56 cases where no reference to the structural element was made but 

a reference to the addition or the result of the addition. 50 of these cases have also been detected by 

ChatGPT (recall 89 %), 11 cases were falsely marked (precision 82 %). The accuracy was 80 %. For 

Question D, that asks if students decided correctly but due to an incorrect surface-strategy, the expert-

rating identified nine cases of the remaining 31 responses. Six of them were found by the AI (recall 

67 %), five answers were falsely accused of a surface strategy (precision 55 %) and the accuracy was 



 

 

at 65 %. All questions showed that with the few-shots prompt, the recall (sensitivity) was higher than 

the precision, meaning that the identification of true yes-answers works well with the price that there 

are several false positive classifications. For Questions B and C, this would imply that the problem is 

falsely classified as correct and possible problems are not detected. For Question D this implies that 

the surface strategy is more often suspected than true. The balance of both error types is of course a 

challenge, but for the specific use of the formative assessment, we would prefer, especially for 

Question B, to have a higher precision. 

Decision tree question n accuracy 

(
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑖𝑜𝑛𝑠
) 

recall 

(
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) 

precision 
(

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑖𝑜𝑛𝑠
) 

A rateable answer? 124 95.7% 98.3% 100% 

B structural element of 

multiplication? 

118 82.2% 100 % 60.4 % 

C addition? 87 80.5 % 89.3 % 82.0 % 

D surface strategy? 31 64.5 % 66. 7 % 54.6 % 

Table 2: Accuracy, recall and precision of ChatGPT’s classification of decision tree questions (Figure 3) 

Discussion and conclusion 

Open-ended items are challenging to use in any assessment, but they bring enormous advantages 

especially for formative assessments aiming at capturing students’ conceptual understanding in 

details and nuances (Hankeln et al., submitted). This small, exploratory study gave insight into the 

challenges of the evaluation of open-ended items and proposed the use of decision trees to get a 

precise impression of the features of a response while on the same time improving the reliability of a 

scoring. The empirical findings show that interrater-reliability of pre-service teachers can indeed be 

improved by a question-based decision tree. However, in this non-representative sample, it did not 

reach a satisfactory level. This can of course be due to insufficient topic-specific epistemic background 

knowledge of the pre-service teachers who have not yet finished their studies, but this could also indicate 

the need for additional information on the expected coding, also when a decision tree is used. Such 

additional information could either be general descriptions that can be accessed on demand, or exemplary 

codings, like they were included in the few-shot prompt that was given to Chat-GPT. Our first results 

seem to confirm Çekiç and Bakla (2021), that AI-based coding is a promising approach for future 

development. In our case, however, we saw a tendency of ChatGPT to have a better recall than precision. 

This has to be investigated further, especially in contrast to other AI-based classifier like for example 

BERT. 
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